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A Chebyshev spectral element method is described for solving the Navier-Stokes equations 
in a channel contraction. The flow region is divided into two semi-infinite elements. The 
governing equation for the stream function is solved using a Newton linearization. The semi- 
infinite elements are treated by means of algebraic-type mappings to transform them onto 
finite domains. The stream function is represented by a double Chebyshev expansion in each 
element. The coefficients are determined by collocating the linearized equation at each 
Newton step and imposing C3 Continuity conditions across the element interface, in a 
collocation sense. Eflicient direct methods based on capacitance matrix ideas are described 
which take advantage of the structure of the spectral element matrix. Results are presented for 
Reynolds numbers in the range [0, ZOO] which are in good agreement with previously 
published work but requiring fewer degrees of freedom. Only several steps of the Newton 
process are required to achieve a converged solution. For Re < 120 the method converges 
from a zero initial approximation and thereafter continuation in the Reynolds number is used 
with increments of 10. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper the solution of the Navier-Stokes equations for the steady, 
2-dimensional laminar flow of an incompressible fluid through an abruptly 
contracting channel is obtained with a Chebyshev spectral collocation method. 
The method used here is an extension of the one developed by Phillips and 
Karageorghis [24] for Stokes flow. 

The distinctive feature of a spectral method is the representation of the solution 
of a differential equation in terms of a truncated series of smooth, global trial func- 
tions. The unknowns to be determined in this method are not the values at selected 
mesh or nodal points as for the finite difference and finite element methods but the 
coefficients in the series expansion of the solution. The coefficients are determined 
using either a Galerkin or a collocation formulation (see Gottlieb and Orszag [6]). 

There are three choices for the set of trial functions which are used in practice. 
First, one can choose the eigenfunctions of the differential operator in the equation 
to be solved, if these exist and are easily computable. For nonlinear problems this 
is not a viable choice. The second choice is the set of eigenfunctions of a related but 
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FLOW THROUGH A CHANNEL CONTRACTION 115 

simpler differential operator. When these are used exponential convergence of the 
expansion coefficients is only observed when the problem possesses special proper- 
ties. Finally one can represent the solution in terms of the eigenfunctions of 
a singular Sturm-Liouville problem. ’ For linear problems possessing smooth 
solutions this choice yields expansions which can converge faster than any finite 
power of N-l, where N is the number of functions in the trial space. 

For nonlinear differential equations the coefficients in the truncated series may 
not converge, as N increases, to the coefficients of the exact series solutions even 
when the solution is smooth. This is because the coefficients in the truncated expan- 
sion are determined by solving a finite system of nonlinear algebraic equations 
whose solution may deviate from the exact coefficients. 

In order to address the question of which is the best set of trial functions for non- 
linear problems Davies et al. [4] and Karageorghis ef al. [ 111 consider a l-dimen- 
sional fifth-order boundary value problem which models viscoelastic flows. They 
compare the performance of beam functions and Chebyshev polynomials with 
respect to a parameter which controls the level of nonlinearity of the problem. Their 
results show that the rapid rate of convergence observed for linear problems is 
maintained when Chebyshev polynomials are used as trial functions. Furthermore, 
this choice is not sensitive to the level of nonlinearity and produces accurate results 
with few degrees of freedom. This is contrary to the experience with beam functions 
in which convergence slows down considerably for highly nonlinear problems, even- 
tually breaking down completely. An interesting point is that the nonlinear system 
of equations for the Chebyshev coefficients can be solved without the need for 
parameter continuation if Newton’s method is used. Karageorghis [13] obtains 
similar results when applying the method to l-dimensional problems in heat transfer. 

For 2-dimensional problems spectral methods are most easily implemented when 
the domain of interest is either rectangular or circular in which case Chebyshev or 
Fourier series expansions, respectively, are appropriate. The natural choice of spec- 
tral expansion functions for a problem defined in a general irregular region is com- 
putationally difficult to determine, unwieldy and inefficient to use, and needs to be 
computed for each new irregular region. This apparent failure of spectral methods 
has been overcome by means of domain decomposition techniques in certain situa- 
tions (OYszag [20], Canuto et al. [3]). For many problems in computational fluid 
dynamics the use of spectral methods in conjunction with domain decomposition 
techniques appears to be attractive since they combine the flexibility of finite 
element methods with the superior approximation properties of spectral methods 
(Patera [21], Morchoisne [ 181, Karageorghis and Phillips [ 123). These techniques 
are known as spectral element methods. They may be viewed as an extreme case of 
the p-version of the finite element method where one has a small number of 

’ Chebyshev and Legendre polynomials are examples of such eigenfunctions. 
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elements and the accuracy of the approximation is improved by increasing the 
degree of the trial functions. 

In this study spectral domain decomposition techniques are used to investigate 
the laminar flow through an abruptly contracting channel. The spectral element 
method is quite naturally applied to this problem by dividing the flow region into 
two semi-infinite domains as shown in Fig. 1. There are two ways in which the 
semi-infinite elements may be treated: domain truncation or domain mapping. The 
former technique involves truncating each of the semi-infinite elements at a finite 
distance from the contraction and has been extensively used in computational fluid 
dynamics for all types of discretization procedures. The alternative, algebraic-type 
mappings, is used to transform each of the semi-infinite elements onto finite ones 
through a transformation of the coordinate in the semi-infinite direction (Grosch 
and Orszag [7], Boyd [ 1 I). An advantage of mapping techniques is that it is 
unnecessary to impose boundary conditions at a large but finite distance from the 
contraction. It is this latter approach which is pursued in the present paper because 
it circumvents the difficulty of choosing where to truncate the domain. 

The spectral element method produces systems of algebraic equations for the 
expansion coefficients which are block tridiagonal in which the blocks are full. This 
fact is exploited by Phillips and Karageorghis [24] who use the capacitance matrix 
method [2] originally devised for finite difference discretizations to invert the 
spectral element matrix. This method is used here to solve the equations which 
result from a Newton linearization of the Navier-Stokes equations. 

Efficient inversion of the matrices associated with spectral domain decomposition 
methods have been the subject of other recent papers. Patera [22] presents a direct 
fast solver for spectral element discretizations of separable elliptic equations on 
rectangularly decomposable domains. Macaraeg and Streett [ 161 have adapted an 
influence matrix technique to spectral patching methods. 

The spectral element method described in this paper requires a small number of 
Newton steps to produce a converged solution. A comparison with the work of 
Dennis and Smith [S] shows good agreement between the sets of results in terms 
of stream function contours and behaviour of the salient corner vortex with 
Reynolds number. For Stokes flow improved solutions around the reentrant corner 
are obtained using expansions based on the known asymptotic form of the 
singularity at the corner. 

I 

FIG. 1. Geometry of the channel contraction. 
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2. THE GOVERNING EQUATIONS 

We consider the steady laminar flow of an incompressible fluid through an 
abruptly contracting channel with walls at y = + 1 for x < 0, y = fcr for x > 0 and 
a < ( yl < 1 for x = 0. The flow is assumed to be symmetric about the centre line 
y = 0 so that only the upper half of the channel need be considered. 

In terms of non-dimensional variables the incompressible Navier-Stokes 
equations are 

(v .V)v = -VP + (Re))‘V2v, 

v.v=o, 

(2.1) 

(2.2) 

where v = (u, v) is the velocity vector, p is the pressure, and Re is the Reynolds 
number. The introduction of a stream function, J/(x, y), defined by 

(2.3) 

means that the continuity equation (2.2) is automatically satisfied and (2.1) 
becomes 

V4@-Re $L(v’$)-~$(v’J)]=o. 
[ 

(2.4) 

On the upper channel wall we have no-slip constraints. The symmetry conditions 
along the centre of the channel, y = 0, are 

&2=, 
ay2 * (2.5) 

We impose Poiseuille flow upstream and downstream of the constriction which 
means that 

*-g(Y) as x+-co, (2.6) 

* -+ gt Y/E) as x+co, (2.7) 

where 

The governing equation (2.4) is nonlinear and is solved iteratively using a 
Newton-type method to linearize it (Phillips [23]). Let us rewrite (2.4) as 

L($)=O, (2.8) 

where L is a nonlinear operator. Suppose that $* is some approximation to the 
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solution of (2.8). We replace L by its linearization about II/* and then solve the 
linearized problem 

L’(Ic/*) -4 = -L(ti*), (2.9) 

where L'($*) is the Frechet derivative of L at $* defined by 

(2.10) 

The new approximation to the solution is thus t,+* + 4. This completes a single 
Newton step and is repeated until convergence is reached. 

3. SPECTRAL COLLOCATION METHOD 

The spectral element method can be naturally applied to the problem considered 
here by dividing the flow region into two semi-infinite regions as shown in Fig. 1. 
There are essentially three ways of treating the semi-infinite domains and choosing 
appropriate trial functions : 

(a) using a Chebyshev-Laguerre representation in the original semi-infinite 
domain ; 

(b) truncating the domain and using a Chebyshev-Chebyshev representation; 

(c) mapping the domain onto a finite one and using a Chebyshev-Chebyshev 
representation. 

A comparison of these choices for Stokes problems is made in Karageorghis and 
Phillips [12]. Their study concluded that the choice (c) gave the most promising 
results. Therefore in this paper we restrict our attention to the domain mapping 
techniques which were first used within a spectral context by Grosch and 
Orszag [7] for l-dimensional problems. 

The subregions I and II (see Fig. 1) are each mapped onto a finite rectangle by 
means of an algebraic-type mapping. If we define subregion I by the set of points 

R,={(x,y): -co<x~0,0~y~1}, 

then under the algebraic mapping 
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R, is mapped onto V, where 

V,={(z,y): -1~z~0,0dy~1}. 

Similarly, subregion II is mapped onto I/,, where 

vu= {(z, y):o~z<l,ody~~} 

under the algebraic mapping 

z=(X+xL,,)’ L,, > 0. (3.2) 

The mapped regions are shown in Fig. 2. The parameters LI and L,, appearing in 
Eqs. (3.1) and (3.2) are known as mapping parameters. 

In each of the regions Vr and Vu the stream function $(z, y) is approximated by 
ll/‘(z, y) and tj’*(z, y), respectively, where 

(3.3) 
m=O n=4 

K N 

V1(zT Y)= g(yla) + C C L,T,*(z) PAY/ah (3.4) 

where 
m=on=4 

T,+(z) = T,,,(2z + l), T,*(z) = T,,,(2z - 1) (3.5) 

and T,(y) are the classical Chebyshev polynomials defined on [ - 1, 11. The trial 
functions in the y-direction are modified Chebyshev polynomials defined so that 
J/‘(z, y) and J/“(z, y) automatically satisfy the boundary conditions along the top 
of the channel and the axis of symmetry. According to this specification we take 

P,(y)=T,*(y)+a,T,*(y)+P,T,*(y)+y,T:(y)+6,T,*(y) (3.6) 

/ /q 

FIG. 2. Mapping of semi-infinite elements onto finite ones. 
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a,={-n2-+(-l+(-l)“)+(--l)“n*(n*-1)/3}/32, 

p, = 6a, - (- l)“n2(n2 - 1)/12, 

yn= -a,+$(-1+(-l)“), 

6,= -1 -a,-fin-yn. 

At each stage of the Newton process, the linearized equation (2.9) is solved using 
the spectral collocation method in the mapped domain. Note that derivatives of the 
stream function with respect to x are transformed into derivatives with respect to 
z in region V, as 

gq+-q i ,jq, +Z)u+js, q = 1,2, 374, (3.7) 
j=l 

where the coefficients cjq) can be evaluated from the recurrence relation 

(q+j)c!q)+c!4)1=c!q+1) 
J J J ’ 

@) = q! 

A similar process is performed in region Vu for the x-derivatives of I++“. The trans- 
formed equation is collocated at certain points in the mapped regions related to the 
extrema of the Chebyshev polynomial of highest degree used in the representations 
(3.3) and (3.4). 

Suppose that at the beginning of a Newton step we have approximations a:, and 
bz,, to coefficients of +’ and $“, respectively, then the collocation method applied 
to the transformed version of (2.9) results in a linear system of algebraic equations 
for (Ja),, and (6bL,, the coefficients of 4 in V, and Vu, respectively. Thus, for 
example, in region VI an equation of the form 

f 2 (~~),,CA&, y) - Re &,(z, Y, a*)1 = Re C(z, Y, a*), (3.8) 
m=on=4 

is collocated at certain points. Here A,,, B,, and C are known functions of their 
arguments and a* is the vector whose components are a$,. A corresponding 
equation is valid in V,,. 

The solutions in the two regions are patched by imposing C3 continuity condi- 
tions in a collocation sense across the interface. These are the natural boundary 
conditions for the associated variational principle. Thus, with respect to the original 
domain we require 

(3.9) 



FLOW THROUGH A CHANNEL CONTRACTION 121 

$0, Ydg(O, y), O<y<a, 

3 (0, Y) = s (0, y), OdyGa, (3.12) 

at certain points across the interface. The derivatives with respect to x are 
transformed into derivatives with respect to z to obtain the associated interface 
conditions in the mapped domain. Therefore at each Newton step we insist that 
$* + 4 satisfies these conditions at the element interface. 

At each stage of the iterative process there are a total of (M+ K+ 2)(N- 3) 
coefficients to be determined. This is verified by inspection of (3.3) and (3.4). An 
equal number of equations needs to be generated. Consider the following sets of 
collocation points 

T,={(xf, y;):3<i<M,2<jQV-2}, 

T,={(x;‘, yf’):3<i<M,2<j<N-2}, 

T,={(O, yf):2<j<N-2}, 

T,= ((0, y;‘):2<j<N-2}, 

where we define 

xf= -fil+cosn(l-f)}. xf’= -x;, 

,=~{l+cos+-~)~, yJ’ = ayJ. 

We collocate (3.8) at points in T, and the corresponding equation in V,, at points 
in T,. The interface conditions (3.9) and (3.10) are collocated at points in T3 and 
(3.11) and (3.12) at points in T4. This choice yields the correct number of equations 
to determine the coefficients of 4. The coefficients of the updated representations are 
therefore a;,, + (da),, and bz, + (66),,. The Newton process is then repeated until 
convergence is reached. 

The omission of the extreme Chebyshev collocation points in choosing T,, T,, 
T3, and T4 means that near the boundaries and element interface the approxima- 
tions II/’ and $” are inlluenced more by the boundary conditions and interface 
continuity conditions than by the differential equation. In the next section we 
describe an efficient method for solving the linear system of equations obtained at 
each Newton step. 
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4. A CAPACITANCE MATRIX METHOD FOR SOLVING 
THE SPECTRAL COLLOCATION EQUATIONS 

At each Newton step there results a system of linear equations for the corrections 
to the expansion coefficients of the form 

A 
I 

0 
I 

C 

a”r B 

5 r- 

, < 

6a 

- 

6b 

= (4.1) 

The dimension of the system in (4.1) is n, + 2n, + n3, where 

n, = (M- l)(N- 3), 

n2 = 2(N- 3), 

?I3 = (K- l)(N- 3). 

The first n, rows of (4.1) correspond to the collocation of (3.8) at points in T, while 
the last n3 rows correspond to collocation of the analogous equation in Vu at 
points in T2. The rows corresponding to C represent collocation of the interface 
conditions (3.9) and (3.10) in T3 while those corresponding to D represent colloca- 
tion of (3.11) and (3.12) in T4. 

For the Stokes problem Karageorghis and Phillips [12] solve the system (4.1) 
using a Crout factorization technique from the NAG Library [19]. Thus 
k(n, + 2~ + n3)3 operations are needed to obtain the solution where k is some 
constant. However, in this approach no advantage is taken of the two blocks of 
zeros in the coefficient matrix of (4.1). The capacitance matrix method was 
originally developed by Buzbee et al. [Z] for the finite difference method in order 
to take account of the structure of the coefftcient matrix in constructing solution 
techniques for problems in rectangularly decomposable domains. Phillips and 
Karageorghis [24] extended the idea to spectral discretizations of the Stokes 
problem and here we develop the technique for the Navier-Stokes equations. An 
advantage of using such a technique is that we are not so restricted in the size of 
problem that we can solve. Furthermore, capacitance matrix methods are efficient 
in terms of storage locations and computational time. 
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To demonstrate this method we rewrite (4.1) in the partitioned form: 

X 

- 

#I 

Y = 

- 

Z 

_ 

T 

- 

S 

- 

t 
- _ 

(4.2) 

The square matrices E, H, and Q are of order n, , 2n,, and n3, respectively. To 
apply the capacitance matrix method (4.2) is written in the component form 
suggested by the partitioning, i.e., 

Ex+Fy =r, (4.3) 

Gx+Hy+Rz=s, (4.4) 

Py +Qz=t. (4.5) 

We write x and z in terms of y by premultiplying (4.3) and (4.5) by the inverses of 
E and Q, respectively, i.e., 

x=E-‘r-E-‘Fy, z=Q-‘t-Q-‘Py. 

Eliminating x and z from (4.4) we obtain the following system for y : 

(H-GE-‘F-RQ-‘P)y=s-GE-‘r-RQ-‘t, (4.6) 

where the coefficient matrix on the left-hand side of (4.6) is known as the 
capacitance matrix. The order of this system is 2n, which is much smaller than that 
of the original system (4.1) and can be efficiently solved using the Crout factoriza- 
tion technique. 

Most of the work in this technique is associated with the inversion of the 
matrices E and Q together with the capacitance matrix. The determination of E-‘r 
and E-‘F requires the solution of (n2 + 1) systems of order n, with coefficient 
matrix E. This requires I+I~)~ + (n,+ l)(nr)’ operations. Similarly Q-‘t and 
Q-‘P are calculated by solving (n2 + 1) systems of order n3 at a cost of 
k(n3)3 + (n2 + l)(n3)2 operations. The solution of the capacitance system (4.6) 
requires 8k(n2)3 + (n2)’ operations. Thus the capacitance matrix method requires 
O(n,n,(n, + n3)) fewer operations to solve (4.2) than the number needed to invert 
the original system. The method also produces a saving of O(n,n,) storage 
locations. 
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5. TREATMENT OF THE STOKESIAN 
REENTRANT CORNER SINGULARITY 

The problem being considered possesses a singularity at the reentrant corner 
(0, a). This has been the subject of several studies for both the Stokes [9, 14, 17,251 
and Navier-Stokes [8, 151 problems. In a vicinity of the reentrant corner we may 
require hundreds of terms in the expansions (3.3) and (3.4) to obtain accurate 
solutions there due to the presence of the singularity. For the Stokes problem the 
asymptotic behaviour of the solution at and near a reentrant corner is known [17]. 
Holstein and Paddon [9, lo] incorporate this known asymptotic form of the 
singularity into a finite difference method of solution. Phillips [25] uses the spectral 
element method with expansions in Papkovich-Fadle eigenfunctions to solve the 
Stokes problem. The solution is then post-processed to determine the coefficients in 
the asymptotic expansion near the corner. The method is successful because at a 
sufficient distance from the corner the spectral representations converge rapidly 
since the effect of the singularity does not penetrate far into the interior of the 
region. These ideas are used to post-process the double Chebyshev solutions 
obtained for the Stokes problem in this paper. 

In the rest of this section we describe briefly the post-processing technique. 
Define a neighborhood, S, of the reentrant corner by 

s= {(r, fFl):O<rdR, -371/4<0<3n/4}, 

where r* =x2 + (y - c1)* and I3 is the polar angle (see Fig. 3). The biharmonic 
equation may be written as a second-order system in polar coordinates [26], 

I-AP=O, 

where 

A= 
0 1 

- (a*@?* + 1 )* 1 -2(d*/a*- 1) ’ 

and 

FIG. 3. Reentrant corner sector. 
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Since the solution of the biharmonic equation in a sector admits a separation of 
variables solution [ 171 we write Y in the form 

Y(r, e) = f dkGUk(Q. 
k=l 

(5.4) 

Substitution of (5.4) into (5.1) yields 

All, = &Uk, (5.5) 

where uk = (&, Akuk)=. The no-slip boundary conditions on the arms 8 = +3x/4 of 
the SeCtOr mean that uk and & are given by 

i 

cos$(,&l)cos(&+l)e-o+-&+l)cos(,&l)8,kodd, 

uk(8) = 

sin~(~-l)sin(~+1)8--sin~(~+l)sin(~-1)~,keven, 

sinF&=(--l)“+lfi. (5.7) 

The first two roots of this transcendental equation are real and the rest occur in 
conjugate pairs. 

The adjoint eigenfunctions, vk, are given by vk = (ok, Uk)= with 

uk(e)=2u;(e)+(1k-2)uk(e), 

and are biorthogonal to the ok(e) in the sense that 

s 3n/4 

V;(e) AU&q do = 0, for m # k. 
- 32714 

Using (5.5) one can show that 

6de) uk(e) de = ck 8k,m, 
- 3x14 

where 

3(&-1)~+2cos 
ck= 

3&+1)7c-2cos 

(5.8) 

(5.9) 

In the post-processing technique (5.4) is assumed to be valid in S with the infinite 
sum replaced by a finite one of L terms, say. The unknown coefficients, dk, in this 
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expansion are determined by matching this expansion with the double Chebyshev 
representation along the circumference of S. The coefficients are given by 

for k = 1, 2, . . . . L, where 

II/R(xY Y) = { “,:r;;,y;, if x< 0, 
if x >O. 

All the functions on the right-hand side of (5.10) are known. However, the integral 
cannot be evaluated analytically because of the complicated form of the integrand 
and so the trapezoidal rule is used. Once the coefficients dk, k = 1, 2, . . . . L have been 
determined the solution within S is then given by 

$“(r, e)= 1 + i dkrl+fiUk(@. 
k=l 

(5.11) 

Outside S the solution is given by $“. 

6. NUMERICAL RESULTS 

Navier-Stokes Equations 

Results are presented for laminar flow (0 < Re < 200) through a 2 : 1 channel 
contraction. A comparison is made with the work of Dennis and Smith [S] who 
use a finite difference method with an extremely line mesh. The performance of the 
spectral algorithm with respect to the degree of the Chebyshev representation, the 
mapping parameters, and the Reynolds number is examined. 

The Newton process is terminated when the maximum difference between 
consecutive values of the expansion coefficients is less than 10P6. For relatively few 
degrees of freedom and with a zero initial guess for the coefficients convergence is 
only achieved for low values of the Reynolds number. In Figs. 4a-d we present con- 
tour plots of the stream function for Re = 0, 10,25, and 50, respectively. Further, 
even with continuation in Re convergence is not obtained for much higher values 
of Re before the interelement continuity suffers considerably (see Fig. 4). Efforts to 
concentrate more collocation points near the element interface by reducing the 
mapping parameters L, and Lu proved only partially successful. 

As the number of degrees of freedom is increased convergence and satisfactory 
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FIG. 4. Contour plots of the stream function obtained with N= 17, M= 16, K= 10 for (a) Re = 0, 
(b) Re = 10, (c) Re = 25, (d) Re = 50. 

interelement continuity is obtained for progressively higher values of the Reynolds 
number when starting from a zero initial guess for the stream function. For 
N = A4 = K= 25 no continuation is required for Re < 120. Only six steps of the 
Newton process are required to reach convergence. The Jacobian is updated after 
every step since only a small number of iterations are needed. If a greater number 
of steps were needed to converge we would update the Jacobian after each of the 
first few iterations until the solution settled down and subsequently after every two 

581/84/l-9 
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TABLE I 

CPU Times and Storage on an Amdahl 5890-300 Computer 
Required for Six Newton Iterations for Re = 50 

Number 
of degrees CPU times Storage 

N=M=K of freedom (seconds) (kbytes) 

7 64 1.4 129 
13 280 15.8 637 
19 640 106.5 2456 
25 1144 442.3 6976 

or three iterations. In Figs. 5a-h we present contour plots of the stream function 
for Re = 0, 1, 10, 25, 50, 100, and 200, respectively. For Re < 100 the method is 
insensitive to the values of the mapping parameters in the proximity of the chosen 
ones of L, = -1.5 and L,, = 1.5. For Re > 100 we found that the interelement 
continuity depended on the values of the mapping parameters. To obtain a more 
accurate solution of the problem at the interface more collocation points in the 
x-direction are concentrated there by simply reducing the values of the mapping 
parameters. The results of Fig. 5(g) for Re = 150 are with L, = LII = 0.8 and of 
Fig. 5(h) for Re = 200 with LI = LII = 0.6. 

The growth of the salient vortex is also investigated. The distance, L,, between 
the point where the separation line meets the top of the channel and the salient 
corner is recorded for different values of Re. A comparison of this length with that 
obtained by Dennis and Smith [S] is shown in the graph of Fig. 6 for Reynolds 
numbers in the range 0 < Re < 200. There is good agreement between the two sets 
of results. The length L, decreases gradually from Re = 0 until around Re = 45 and 
then increases monotonically. Similar observations were made regarding the 
strength of the salient corner vortex. 

TABLE II 

Dependence of Coefficients in Asymptotic Expansion on R 

R ai a2 Wad Wad ReW Imh) 

0.125 -2.0667 5.9369 0.0514 0.3997 0.2822 0.3522 
0.250 - 1.9786 6.2491 -0.3178 0.5685 -0.2051 0.2351 
0.375 - 1.9663 6.3795 -0.3930 0.6014 -0.2759 0.2005 
0.500 - 1.9814 6.5126 - 0.4393 0.6240 -0.3110 0.1844 

Kelmanson - 1.9862 6.5599 -0.4536 0.6292 -0.3114 0.1754 
Cl41 
(320 nodes) 
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b 

1 I--‘- 

FIG. 5. Contour plots of the stream function obtained with N = M= K= 25 for (a) Re =0, 
(b) Re = 1, (c) Re = 10, (d) Re = 25, (e) Re = 50, (f) Re = 100, (g) Re = 150, (h) Re = 200. 

Finally, we consider the computational requirements of the Chebyshev spectral 
collocation method. In Table I we show how the CPU time, in seconds, and 
storage, in kilobytes, varies with the number of degrees of freedom in the case when 
Re = 50. Unlike finite difference or finite element discretizations the storage 
requirements increase dramatically with the size of the problem. This is due to the 
non-sparse structure of the spectral element matrix. At least three times fewer 
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FIG. 5 -Conlimed 

degrees of freedom are used in this method than the method of Dennis and 
Smith [S] to obtain comparable results. 

All computations were performed on an Amdahl 5890-300 computer located at 
the University of Manchester Regional Computing Centre. 

Stokes Singularity 

Here we present results of the post-processing of the Stokes solution obtained 
with N = M = 16, K = 8. With this number of degrees of freedom the degradation in 
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Re 

FIG. 6. The dependence of L, on Reynolds number. Our results (0) are in good agreement with 
previous calculations [S] ( x ). 

the smoothness of the solution is observed around the reentrant corner due to the 
presence of a singularity there. The post-processing technique was applied with 
both six and ten terms in the singular expansions and for different values of the 
sector radius R. The use of six terms is sufficient to produce smooth contours in the 
neighbourhood of the singularity. The stream lines before and after post-processing 
are shown in Figs. 7(a) and (b), respectively. A close-up of the solution around the 
reentrant corner before and after the post-processing is given in Figs. 7(c) and (d), 
respectively. 

The values of the coefficients in the asymptotic expansion in the region around 
the singularity are recorded for different values of R and tabluated in Table II. The 
coefficients are compared with those of Kelmanson [14] who uses a boundary 
integral formulation which incorporates the correct singular behaviour in the 
neighbourhood of the singularity. The two sets of coefficients are in good agree- 
ment. 

7. CONCLUSIONS 

The steady laminar flow of an incompressible fluid through a channel contraction 
is examined. The stream function formulation of the governing Navier-Stokes 
equations is linearized using Newton’s method and solved numerically using a 
Chebyshev spectral collocation method. The semi-infinite elements are treated using 
an algebraic-type transformation to map them onto finite rectangles. 

The spectral element collocation method for the linearized Navier-Stokes equa- 
tions results in a system of linear equations with a block tridiagonal structure at 
each Newton step. Each of these non-zero blocks is a full matrix. The structure of 
the spectral elements matrix is exploited using a capacitance matrix method. This, 
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FIG. 7. Contours of the stream function for the Stokes problem (a) before and (b) after post- 
processing. A magnification of the situation is shown (c) before and (d) after post-processing. 

of course, is much more efficient than solving the full system directly without taking 
into account the inherent matrix structure. The capacitance matrix method also 
enables us to solve larger systems than is possible with the original method and, as 
a result, more accurate solutions are obtained. Only a small number of steps in the 
Newton process is required to reach a converged solution. The results agree 
qualitatively and quantitatively with previously published work. 

For Stokes flow the reentrant corner singularity is treated using a post-processing 
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technique which incorporates the analytical solution of the problem in a 
neighbourhood of the corner. This technique improves the quality of the solution 
around the reentrant corner. The extension of this idea to flows with non-zero 
Reynolds numbers is presently under investigation. 

In this paper we have restricted ourselves to the numerical spectral simulation of 
laminar flows. The possible extension of the method described in this paper to the 
non-laminar regime would inevitably require more spatial resolution. This means 
that efficient iterative methods as opposed to the direct methods considered here 
would need to be devised to solve the spectral collocation equations in this case. 
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